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Abstract—In this work, a deep convolutional neural network
(CNN) is proposed to detect atrial fibrillation (AF) among the
normal, noisy and other categories of cardiac arrhythmias elec-
trocardiogram (ECG) recordings. The proposed CNN is trained
by stochastic gradient descent with the categorical cross-entropy
loss function. The network performance is evaluated on training
(75%) and validation (25%) data sets that are obtained from 2017
Physionet/CinC challenge database. The proposed CNN model
respectively achieves the average accuracy and F1 score of 87%
and 0.84 on validation data set.

One of the main advantages of this work besides high accuracy
and reliability, is to simplify the feature extraction process and
to remove the need for detecting ECG signal fiducial points
and extracting hand-crafted features unlike conventional methods
available in the literature. Moreover, it provides an opportunity
for ECG screening in a large population, especially for atrial
fibrillation screening, using wearable devices such as OM apparel
that records high-quality single channel ECG signal.

I. INTRODUCTION

Atrial fibrillation (AF) is one of the life threatening cardiac
arrhythmias which are associated with increased mortality and
morbidity. AF is an irregular and rapid heart rate which can
lead to an increased risk of strokes, heart failures and other
heart-related complications if it is not detected on time [1].
During AF, the atria experience a number of chaotic and
irregular electrical impulses that cause the atria to quiver
rapidly. Hence, the atria-ventricular (AV) node is bombarded
with impulses trying to get through to the ventricles. The result
is a fast and irregular heart rhythm. The heart rate during an
atrial fibrillation episode may range from 100 to 175 bpm.

Although the definitive diagnosis of AF is the 12-lead ECG,
it is more cost effective to screen patients through the use of
one lead of the ECG signal. In order to avoid any delay in the
AF diagnosis and to diminish the subsequent risks, physicians
generally recommend that patients use an ECG wearable
device for daily monitoring. During long-term, remote ECG
monitoring, a massive amount of data is collected which is
infeasible for visual inspection by a physician. Therefore,
automated computer-based ECG classification approaches have
been developed in the literature to detect AF and to also reduce
false alarms that were common in traditional ECG monitoring
systems.

To date, most of the available ECG classification approaches
solely rely on extracting features from the ECG signal which
normally requires deep domain knowledge and human exper-
tise. The quality of extracted features has significant impact on
the reliability and performance of a given ECG classification
algorithm. Different statistical and morphological features in
the time and frequency domains can be extracted from the ECG
signal to diagnose AF episodes [2]–[8]. The extracted features
are then fed either to generative or discriminative models to
predict or classify the ECG signals.

In general, ECG signal feature extraction particularly ex-
tracting morphological features that requires detecting the ECG
signal fiducial points is an error-prone strategy. Usually, the
extracted features are not sufficiently robust with respect to
many variations, such as translations, noise, scaling, displace-
ment, etc. Moreover, the ECG signal characteristics are highly
subject-dependent and extracting effective features usually
require a deep domain knowledge and expertise. Moreover,
any automatic cardiac arrhythmia detection algorithms must
implicitly recognize the distinct wave types and discern the
complex relationships between them over time which is a
difficult task due to the variability in wave morphology among
patients.

Recently, deep neural networks have received a great deal
of attention in various applications such as object detection,
computer vision, activity recognition and biomedical signal
processing. The strong feature learning capability of a deep
convolutional neural network (CNN) makes it a very promising
approach for solving ECG signal classification problems. Deep
CNN can be directly applied on raw ECG signals with no need
of any pre-processing or filtering or fiducial point detection.
It enables us to extract temporal features from ECG signals
in order to address the desired classification problem. In this
work, a deep CNN structure is proposed to address the 2017
Physionet/CinC challenge. The goal of this challenge is to
develop an algorithm to classify normal sinus rhythm (NSR),
AF, other rhythms (O) and noisy recordings from a short
single-channel ECG recording (9 - 60 seconds). Our work is
inspired by different deep CNN structures that were utilized
in the literature to solve various ECG signal classification and
arrhythmia detection problems [9]–[19].

The major benefit of our proposed approach is to simplify
the feature extraction process corresponding to AF detection
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TABLE I. THE STRUCTURAL AND LEARNING PARAMETERS FOR THE
OPTIMIZED CNN DURING THE TRAINING MECHANISM.

Parameters Value
Initial Learning Rate 0.01
Momentum 0.9
Kernel Size 3
Pooling Size 5
Convolutional Filters 64
Number of Neurons in Fully Connected Layer 100
Batch Size 64
Iteration per Epoch 100
Stopping Epoch 86

and to remove the need for using a human expert to define
appropriate and critical features working with a large data
set. Our proposed CNN reaches the highest accuracy on both
training and validation data set as compared to the other sim-
ilar approaches that are applied on the 2017 Physionet/CinC
challenge [20]–[22]. The details on the general structure of
our proposed CNN-based AF detection method are provided
below.

II. CONVOLUTIONAL NEURAL NETWORK DESIGN

Convolutional neural networks (CNN) were initially de-
veloped in the 1980s by K. Fukushima [23]. It is the first
deep learning approach whose hierarchical layers are trained
robustly by means of the stochastic gradient decent algorithm.
It is also a popular method for feature extraction and time-
series classification.

In this work, the CNN is used to solve the task that was
presented in the 2017 Physionet/CinC challenge. The CNN
is composed of a batch normalization applied on an input of
raw ECG recordings, multiple convolutional layers followed by
max-pooling layers, a certain number of fully connected layers
as well as a softmax output layer. Batch normalization and
dropout layers are also applied after each set of convolutional
and max-pooling layers to avoid over-training [24].

The network parameters are trained via the stochastic gra-
dient descent algorithm with the categorical cross-entropy loss
function. The time-based learning rate schedule is also used
which decreases the learning rate in each epoch with the rate
of 1

Epoch Number . The exponential linear unit (elu) and tanh are
respectively used as the activation functions of convolutional
and fully connected layers. The overall structure of our pro-
posed CNN is depicted in Fig. 1. Also, our proposed CNN
structural and learning parameters are indicated in TABLE I.

III. 2017 PHYSIONET/CINC CHALLENGE DATABASE

The 2017 PhysioNet/CinC Challenge aims to encourage the
development of algorithms to classify, from a single short ECG
lead recording (between 9 to 60 seconds in length), whether the
recording shows normal sinus rhythm (NSR), atrial fibrillation
(AF), an alternative rhythm (O), or is too noisy to be classified.
The ECG data is collected by the AliveCor device. The training
set contains 8528 single lead ECG recordings sampled at 300
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Fig. 1. The overall structure of our proposed CNN to solve AF detection
problem presented in 2017 Physionet/CinC challenge.

Hz, where 5145 are NSR, 771 are AF, 2557 are other rhythms
and 46 are noisy recordings. Fig. 2 shows the examples of the
ECG waveforms (lasting for 20 seconds) for the four classes
in this Challenge.

A number of the original ECG recordings are inverted
probably due to the electrode misplacement. Inverted records
are more likely to be classified as abnormal due to the presence
of infrequent QRS and T wave morphologies, as well as to the
greater difficulty to identify P waves. Therefore, the inverted
version of all the given original ECG recordings are also
generated and then used as the CNN input data.

IV. CNN PERFORMANCE EVALUATION

In this section, the performance of our trained CNN with the
topology displayed in Fig. 1 is investigated. For this purpose,
the 2017 Physionet/CinC challenge data is divided into training
and validation data sets. 75% of data is used for training the
CNN and 25% of data is used for validating the performance
of our proposed CNN. In each epoch, a batch of 64 samples is
selected from the training data set for which the CNN model
is trained and this procedure is repeated 100 times. By the
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Fig. 2. Four 20-second ECG signals corresponding to NSR, AF, O and noisy classes in 2017 Physionet/CinC Challenge database.

TABLE II. THE STRUCTURAL AND LEARNING PARAMETERS FOR THE
OPTIMIZED CNN DURING THE TRAINING MECHANISM.

Precision Recall F1 Score
Normal 0.9367 0.9090 0.9227
Other 0.7527 0.8023 0.7767
Noisy 0.6615 0.8113 0.7288

AF 0.8507 0.8210 0.8356

end of each epoch, the categorical accuracy is calculated for
training and validation data sets. The model is saved when it
reaches either the highest accuracy or the lowest loss values
on validation data.

In average after performing 5-fold cross-validation, the
proposed CNN reaches almost 91% and 87% accuracy respec-
tively associated with training and validation data sets. The
average values of precision, recall and F1 score are indicated
in TABLE II.

It must be noted that precision (positive predictive value),
recall (true positive rate) and F1 score are calculated as
follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2

1
Precision + 1

Recall

(1)

where TP, FP and FN are true positive, false positive and false

negative, respectively.

V. CONCLUSION

In this work, a deep CNN architecture is proposed as a
feature learning and classification methodology to detect AF
with no need to find fiducial points and to extract hand crafted
features. The proposed CNN network is capable of operating
with raw ECG time-series signals to extract and down-sample
features through computing convolutions among the input
vectors with their associated weights as well as determining
the maximum outputs among the adjacent neurons. The pro-
posed methodology enables one to detect cardiac arrhythmias
particularly AF, as it is one of the most life-threatening heart
disorders that can be prevented and treated if it is detected on
time.

The performance of our proposed CNN is measured on the
2017 Physionet/CinC challenge dataset and the overall accu-
racy and F1 score are higher than other techniques presented in
CinC 2017. It must be noted that the testing dataset containing
3658 ECG recordings of similar lengths is unavailable to the
public and was only used for scoring for the duration of the
Challenge. Hence, it is not possible to evaluate the performance
of our CNN model on testing dataset. However, based on our
cross-validation process, it is expected that our proposed model
is still capable of performing comparably on the testing data.
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